Supplementary Information ## Inhibition of cyclic diadenylate cyclase, DisA, by polyphenols Clement Opoku-Temeng^{a,b,c} and Herman O. Sintim ^{a,b}* ^aDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA ^bCenter for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA ^cGraduate program in Biochemistry, University of Maryland, College Park, Maryland 20742, USA; ^{*}Correspondence author: Tel: +1 (765) 496-6078; Email: hsintim@purdue.edu ## **ADDITIONAL FIGURES** **Supplementary Fig. S1** Structures of polyphenols tested against DisA. These polyphenols were tested against DisA and were found to not inhibit c-di-AMP synthesis. Supplementary Fig. S2 Inhibition of DisA by TA. IC_{50} values of tannic acid were determined at the indicated DisA concentrations. The IC_{50} increased with increasing DisA concentration. Error bars represent SEM of triplicate measurements. **Supplementary Fig. S3** HPLC chromatogram of YybT reactions (A) without inhibitor (B) with 20 μ M TA (C) 20 μ M TF3 and (D) 20 μ M TF2B. The pApA and c-di-AMP peaks are labeled with arrows. Supplementary Fig. S4 Triton X-100 abolishes TA inhibition of DisA. 20 μ M TA completely inhibits the activity of 1 μ M DisA. Complete reactivation of DisA was observed at 0.1% Triton X-100. Error bars represent the mean and SEM of triplicate measurements.